Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.
Types
Drinking water treatment
Main articles: Water purification, Drinking water, and water supply
Water contamination is primarily caused by the discharge of untreated wastewater from enterprises. The effluent from various enterprises, which contains varying levels of contaminants, is dumped into rivers or other water resources. The wastewater may have a high proportion of organic and inorganic contaminants at the initial discharge. Industries generate wastewater as a result of fabrication processes, processes dealing with paper and pulp, textiles, chemicals, and from various streams such as cooling towers, boilers, and production lines.[1]
Treatment for drinking water production involves the removal of contaminants and/or inactivation of any potentially harmful microbes from raw water to produce water that is pure enough for human consumption without any short term or long term risk of any adverse health effect. In general terms, the greatest microbial risks are associated with ingestion of water that is contaminated with human or animal (including bird) faeces. Faeces can be a source of pathogenic bacteria, viruses, protozoa and helminths. The removal or destruction of microbial pathogens is essential, and commonly involves the use of reactive chemical agents such as suspended solids, to remove bacteria, algae, viruses, fungi, and minerals including iron and manganese. Research including Professor Linda Lawton‘s group at Robert Gordon University, Aberdeen is working to improve detection of cyanobacteria.[2] These substances continue to cause great harm to several less developed countries who do not have access to effective water purification systems.[original research?]
Measures taken to ensure water quality not only relate to the treatment of the water, but to its conveyance and distribution after treatment. It is therefore common practice to keep residual disinfectants in the treated water to kill bacteriological contamination during distribution and to keep the pipes clean.[3]
Water supplied to domestic properties such as for tap water or other uses, may be further treated before use, often using an in-line treatment process. Such treatments can include water softening or ion exchange.[citation needed]
Wastewater treatment
This section is an excerpt from Wastewater treatment.[edit]
Wastewater treatment is a process which removes and eliminates contaminants from wastewater and converts this into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environment or is reused for various purposes (called water reclamation).[4] The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater (also called municipal wastewater or sewage), the treatment plant is called a Sewage Treatment. For industrial wastewater, treatment either takes place in a separate Industrial wastewater treatment, or in a sewage treatment plant (usually after some form of pre-treatment). Further types of wastewater treatment plants include Agricultural wastewater treatment and leachate treatment plants.
Processes commonly used in wastewater treatment include phase separation (such as sedimentation), biological and chemical processes (such as oxidation) or polishing. The main by-product from wastewater treatment plants is a type of sludge that is usually treated in the same or another wastewater treatment plant.[5]: Ch.14 Biogas can be another by-product if anaerobic treatment processes are used. Treated wastewater can be reused as reclaimed water.[6] The main purpose of wastewater treatment is for the treated wastewater to be able to be disposed or reused safely. However, before it is treated, the options for disposal or reuse must be considered so the correct treatment process is used on the wastewater. Bangladesh has officially inaugurated the largest single sewage treatment plant (STP) in South Asia, located in the Khilgaon area of the city. With a capacity to treat five million sewage per day, the STP marks a significant step towards addressing the country’s wastewater management challenges.[7] The term “wastewater treatment” is often used to mean “sewage treatment”.[8]
Industrial water treatment
This section is an excerpt from Industrial water treatment § Overview.[edit]
Water treatment is used to optimize most water-based industrial processes, such as heating, cooling, processing, cleaning, and rinsing so that operating costs and risks are reduced. Poor water treatment lets water interact with the surfaces of pipes and vessels which contain it. Steam boilers can scale up or corrode, and these deposits will mean more fuel is needed to heat the same amount of water. Cooling towers can also scale up and corrode, but left untreated, the warm, dirty water they can contain will encourage bacteria to grow, and Legionnaires’ disease can be the fatal consequence. Water treatment is also used to improve the quality of water contacting the manufactured product (e.g., semiconductors) and/or can be part of the product (e.g., beverages, pharmaceuticals). In these instances, poor water treatment can cause defective products.[citation needed] In many cases, effluent water from one process can be suitable for reuse in another process if given suitable treatment. This can reduce costs by lowering charges for water consumption, reduce the costs of effluent disposal because of reduced volume, and lower energy costs due to the recovery of heat in recycled wastewater.